Development of Geomechanical Screening Tools to Identify Risk: An Experimental and Modeling Approach for Secure CO₂ Storage

DE-FE0023314

Mary F. Wheeler

The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 16-18, 2016

Presentation Outline

Develop a Geomechanical Screening Tool to Identify Risk

✓ Experimental & Modeling Approach for Secure CO₂ Storage

Project Overview: Goals and Objectives

Develop a screening tool for improved understanding of geomechanical effects associated with CO₂ injection

□ Derive a workflow from experimental and computational studies conducted for specific CO₂ sites, e.g. Frio, Cranfield

Task 1 Project management (M.F. Wheeler-lead)

Task 2 Conduct laboratory experiments for hydro-mechanical rock properties (N. Espinoza-lead)

Task 3 Upscale to bridge from laboratory to field scales (M.F.W.–lead)

Task 4 Extend simulator capability to model CO₂ storage field scale studies (M. Delshad & B. Ganis–leads)

Task 5 Perform parameter estimation & uncertainty quantification (M.F.W.-lead, S. Srinivasan-consultant)

Task 6 Integrate results to generate geomechanical screening tool / workflow (M.F.W.-lead, S.S.-consultant)

Technical Status

Task 2. Conduct Laboratory Experiments for Petrophysical & Hydro-mechanical Rock Properties (N. Espinoza–lead)

Task 2: Laboratory Experiments

Objectives		Complete modeling, perform reservoir simulations, and analyze geological uncertainty for two CO ₂ storage field studies (Frio, TX & Cranfield, MS)				
+	Measure	mechanical property from Task 2	MS Source of large volumes of CO, via existing pipelines			
•	Collect o (seismic,	ther existing data , well logs, etc.)	Sabre Proven hydrocarbon g seals AL			
+	Measure mechani	impact of geochemical alteration on cal properties	Site 1: Cranfield, Mississippi			
+	Study roo weakenii pathways	ck dissolution and its effect on ng the rocks and creating leakage s	(Source: DOE Cranfield Fact Sheet)			
Ļ	Enhance quantifyi pressure	ed simulation for studying and ng parameters, e.g. reservoir over , chemical and thermal loading	Site 2: Frio pilot study, Texas			

Large Axisymmetric Triaxial Frame Connected to ISCO Pumps for Fluid Injection

• Experimental setup

Sample mounted on the loading frame

2 Data acquisition

Cylinders & pumps for flow system connected to the triaxial cell

Petrophyscial Properties at CO₂ Storage Sites

 Cranfield, MS (Tuscaloosa sandstone): unsteady state gas permeability test

C-sandstone (Frio, Texas)	Tuscaloosa Sandstone (Cranfield, Mississippi)
orosity: ~ 0.36 ermeability	Porosity : ~ 0.31Permeability
k (mD) k _g at breakthrough (mD) k _w at S _{gr} (mD)	k (mD) k _g at breakthrough (mD) k _w at S _{gr} (mD)

	· · · · ·	3 0 ()	
Vertical	470	184	263
 Capillar 	v pressure m	easured (porous-plate	method and

- Capillary pressure measured (porous-plate method and mercury injection capillary pressure method)
- Relative permeability (Brooks-Corey model)

	k (mD)	k _g at breakthrough (mD)	k_w at S_{gr} (mD)
Vertical	6.2	1.3	1.43
Horizontal	93	62	37

P

Mechanical Properties at CO₂ Storage Sites

• Cranfield, MS (Tuscaloosa sandstone): determination of bulk Biot coefficient at in-situ reservoir stress condition

Mechanical Properties at CO₂ Storage Sites

• Frio, Texas (C-sand): multistage triaxial loading test at confining stress 500, 1,000 and 1,500 psi

CO₂ Storage Sites

C-sandstone (Frio, Texas)

Drained mechanical moduli at reservoir stress condition

	E _{static_loading} (GPa)	E _{static_unloading} (GPa)	ν
Vertical	2.74	8.74	0.2 ~ 0.4

- Significant elastic nonlinearity and plastic strains
- Shear strength Friction angle (38°)

Cohesive strength (Zero, Unconsolidated sandstone)

Remarkable creep measurement at constant stress

Tuscaloosa Sandstone (Cranfield, Mississippi)

Drained mechanical moduli, Stress anisotropy

	E _{static_loading} (GPa)	E _{static_unloading} (GPa)	ν
Vertical	1.9	10.91	0.12 ~ 0.29
Horizontal	1.81	7	0.11 ~ 0.17

- Elastic nonlinearity only beyond the yield cap
- Noticeable creep measurement at constant stress

Technical Status

Task 3. Upscale by Completing Bridge from Laboratory to Field Scales (M.F. Wheeler–lead)

Task 3: Bridge from Laboratory to Field

Objectives		Upscale measured rock properties (f relevant to field processes	luid flow & geomechanics) to scale
•	Develop combinin approact	ment of homogenization schemes ng numerical and analytical hes	$\int_{z_{2}}^{\sigma_{33}} \int_{z_{2}}^{\sigma_{22}} \int_{z_{2}}^{\sigma_{2}} $
+	Particula natural f	ar emphasis will be put on including fractures in effective properties and ion effects	$\sigma_{11} \qquad $
•	Obtain fi perform geomec	eld scale constitutive parameters to coupled fluid flow and hanical numerical simulation	
UNIVERSITY OF			12

Concentration on Coarse-Scale Gridblocks

Tracer History at Production Well

- Multi-well tracer test with continuous injection of tracer
- Single/multi-well tracer tests provide information to validate the upscaled model
- Fine and coarse scale concentration profiles in good agreement
- Validation for single phase flow and transport with ε order diffusion.

Application to the Frio Field Model

Homogenization of Frio Field Model Running Integrated Parallel Accurate Reservoir Simulator (IPARS) • Grid refinement in the region of pilot study: enhanced velocity Upscaling toolset HOMOGEN implemented and verified C sand only 20 ft thick • Only 30 permeability values separated in the vertical direction • Scale separation (ϵ) assumption of homogenization does not apply • Resolving differences in plume migration for fine and coarse scale underway • **CO₂** Plume Migration Seismic Observations Injection Well Distance (m) 10 Observation (B) 20 30 Well Good match with seismic observation . 950 CO2 1.018e-22 0.2500 0.5000 0.7500 1.000 1.19 Depth (ft below GL) 5000 Top of C sand CO_2 injector 5050 Sigma Sigma -1.0-0.5Ô 0.5 (Hovorka et al., 2006) Change in Velocity (km/s)

Technical Status

Task 4. Simulator Development and Modeling CO₂ Storage Field Scale Studies (M. Delshad and B. Ganis–leads)

Task 4: Simulator Development

Objectives		Complete simulator development wit processes	n numerical schemes for coupled
→	Develop processe for flow ,	computational methods for coupled es based on multiscale discretization geomechanics & hysteresis	Injection well Obs well Other well Junction Junc
+	Developr solvers	nent of efficient & pre-conditioners	0 1 2 km Well in Woodbinson Well in Woodbinson
	Model C simulatio	O₂ storage field sites and perform ns	

Multiphase Relative Permeability and Hysteresis Models at a CO₂-EOR Field for CCS Utilization

Gas	Gas Mobility Control Methods													
• V	Vat	er Altei	natin	g Gas	(WAG	6)								
• 5	Simu	ultaneo	us Wa	iter an	d Gas	(Colr	nj)							
• 5	Surf	actant	-alterr	nate-g	as (SA	\G) *								
	> TI	he 1 st s	urfacta	ant lov	vers So	or: re	ducir	g IFT						
	> TI	he 2 nd s	surfact	ant co	ontrols	gas r	nobil	ty: ger	nerati	ing foar	n			
(0	Curre	ently, co	mmerc	ial S/W	/s do no	ot imp	lemer	nt the in	jectio	n of two	surfa	ctant	t type:	s.)
• 5	Surfa	actant o	dissolv	/ed in	CO ₂ (ii	n-situ	foar	n)						
• F	Poly	mer As	sisted	WAG	_									
• F	Poly	mer dis	solve	d in C(O_2 (vis	cosify	ying (CO_2)						
								-						
VV	•	Inject the	e 1ª sur	Tactant.	Then, a	iternate	e wate	r & gas				G	W	SI
A														1%
G														
S	•	Inject th	ə 1 st sur	factant.	Then, a	Iternate	e 2 nd s	urfactan	t foam	& gas		G	SF	SI
Α													0.1	4.07
						-	200000	000000					5555555	1%

Multiphase Relative Permeability and Hysteresis Models at a CO₂-EOR Field for CCS Utilization

Model Description

•
$$\Phi = 0.2; \frac{k_v}{k_h} = 0.1; S_o^{initial} = S_{orw} = 0.35$$

- Initial pore volume = 53.4 MSTB
- $T^{initial} = 90^{\circ}$ F; $P^{initial} = 1,500 psia$
- Initial oil composition:
 - C_{10} =30%; C_{15} =40%; C_{20} =30%

Simulation Results

Multiphase Relative Permeability and Hysteresis Models at a CO₂-EOR Field for CCS Utilization

Cycle-dependent Relative Permeability in Multi-cycle WAG Processes

- As the cycle number increases from the 1st to the 8th,
 - Gas relative permeability decreases in time.
 - Gas normalized trapped saturation increases monotonically.
 - : due to hysteresis !

Compositional Simulation for the CO₂-EOR field: Cranfield, MS

Task 4

Compositional Simulation for the CO₂-EOR field: Cranfield, MS

(* Special thanks to Sun, A. and Hovorka, S. This work was collaborated with Bureau of Economic Geology.)

Geomechanical Effects of CO₂ Injection with a Poro-plasticity Model

Fluid Flow	$\frac{\partial(\rho(\phi_0 + \alpha\varepsilon_v + \frac{1}{M}(p - p_0)))}{\partial t} + \nabla t$	$7 \cdot \left(\rho \frac{K}{\mu} (\nabla p - \rho g \nabla h) \right) - q = 0$
Stress Equilibrium	$\nabla \cdot (\sigma'' + \sigma_o - \alpha(p - p_0)I)$) + f = 0
Hooke's law	$\sigma'' \ = \ D^e : (\varepsilon - \varepsilon^p)$	Druker-Prager Yield Surface
Strain-Displacement Relation	$\varepsilon \; = \; \frac{1}{2} (\nabla u + \nabla^T u)$	
Plastic Strain Evolution	$\begin{aligned} \dot{\varepsilon}^p &= \lambda \frac{\partial F(\sigma'')}{\partial \sigma''}, \text{at } Y(\sigma'') = 0\\ \dot{\varepsilon}^p &= 0, \text{at } Y(\sigma'') < 0 \end{aligned}$	
Yield and Flow Functions	$Y = q + \theta \sigma_m - \tau_0$ $F = q + \gamma \sigma_m - \tau_0$	σ_3 σ_1

Task 4

Poro-plasticity Simulation for the CO₂-EOR Field: Cranfield, MS

Reservoir Model Description

- Latest Cranfield numerical experiments:
 - Fully compositional multiphase flow
 - Druker-Prager poro-elasto-plasticity
 - Stress-dependent permeability
 - 4 injection wells / 2 production wells
- Domain size: 150 x 1,000 x 1,000 ft³
- Simulation time: 595 days

Hexahedral Geometry

 Grid Resolution:
 26 x 188 x 176 = 860,288 hexahedral finite elements

- Computer Used:
 - Stampede at TACC
 - Parallel simulation using 512 cores
 - Runtime of 34 hours

Poro-plasticity Simulation for the CO₂-EOR Field: Cranfield, MS

Shape of CO₂ Plume at the Injector CFU-31F1 at Cranfield, MS

Shape of CO₂ Plume at the Injector CFU-31F1 at Cranfield, MS

Effects of Poro-elasticity, Poro-plasticity, & Stress-dependent Permeability

- Hexahedral geometry and gravity had positive impacts on BHP results.
- Mechanics allows computation of displacements, stresses, & plastic strain.
- Either linear or nonlinear mechanics did not significantly impact well BHP.
- Stress-dependent permeability (SDP) had a noticeable effect on well BHP, but calibration is needed.
- Not yet history-matched using a compositional-geomechanics module

Future Works

- Perform history matching using the coupled compositional-geomechanical model w/ SDP
- Incorporate local grids and time stepping with more accurate well information
- Perform near-wellbore studies with discretely meshed well for better plastic effects

Technical Status

Task 5. Parameter Estimation & Uncertainty Quantification (M.F.W.–lead, S. Srinivasan–consultant)

Task 5: Uncertainty Quantification

History Matching Coupled with Level-Set Parameterization, MFDFrac, and EnKF

History Matching Coupled with Level-Set Parameterization, MFDFrac, and EnKF

THE UNIVERSITY OF TEXAS

History Matching of a Fractured Reservoir : at the Well KB-503 in the In Salah CCS Field

History Matching of a Fractured Reservoir : at the Well KB-503 in the In Salah CCS Field

Vertical Displacement	Global-Objective Optimization	Multi-Objective Optimization
 InSAR: satellite measured vertical displacement resulting from CO₂ injection Simulator: CMG-GEM 	 High permeability near the KB-503 well yielded underestimated BHP compared to observed BHP. 	 Low permeability near the KB-503 well improved the matching quality of BHP.
Vertical displacement (unit: mm)	8000 000 000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0	8000 000 000 000 000 000 000 000

Technical Status

Task 6.

Integrate Results to Generate Geomechanical Screening Tool/Workflow (M.F.W.–lead)

Task 6: Geomechanical Screening Tool

	Derive a workflow based on project tasks performed - experimental and
Objectives	numerical investigation of geomechanical processes, effects, & conditions
	related to CO ₂ storage and analysis of two CO ₂ storage field case studies

Development of a Multiple Model Optimizer : IRMS (Integrated Reservoir Management S/W)

Accomplishments to Date

Integrated Geomechanical Screening Tool / Workflow (T6)

Lab-scale Experiments (T2)

- Experimental setup (1st year)
- Non-destructive test (1st & 2nd years)
 - Flow properties
 k, kr (for T3 & T4)
 - > Mechanical properties λ, μ, α (for T3 & T4)
- Destructive test (3rd year)
 - Strong acid to accelerate fractures for geochemical reaction (for T3)
 - Effect of hysteresis (for T4)

- Development of Forward Models (T3 & T4)
- Enhanced velocity for LGR (T3)
- Compositional (T4)
- MFMFE (T4)
- Homogenization (T3)
- Poro-plasticity (T4)
- Gas-mobility control (T4)
- Time stepping (T3)
- Hysteresis (T4)
- Development of Inverse Models (T5)
 - Level-set (T5)
 - EnKF (T5)
 - Multi-objective optimization (T5)

Field Observations (T2 to T5)

- Frio (T3) Tracer w/ minimal chemical reaction
- Cranfield (T4 & T5) No chemical reaction Few core data History matching w/ Mechanics and Hysteresis
- Castlegate (T2 & T3) Outcrop sandstone for destructive test

Legend –

Tasks during the 1st year Tasks during the 2nd year Tasks during the 3rd year

Synergy Opportunities

Assistance in Decision Making

 Assist in selection of suitable sites for safe CO₂ storage using generalized S/Ws based on a posteriori knowledge

Interdisciplinary Collaboration

 Enhance understanding of the effects of CO₂ migration on open and closed faults and fractures

Training & Education

 Support training and education of students who will take part in an interdisciplinary work, e.g. IPARS tutorial

Contribution to Identifying Geological Risk for Secure CO₂ Storage!

Outreach

Annual Affiliates Meeting

 The annual two-day event presents opportunities for our industrial partners to hear about latest developments in timely and critical areas of technology (November 3-4, 2015)

UTPREP4

 The Role of Computation in Protecting the Environment: A Workshop for High School Students on Energy and the Environment (July 13-14, 2016)

Summary

We have measured fluid and geomechanical properties such as relative permeability, Biot Coefficients, for Frio and Cranfield sites through lab-scale non-destructive experiments.

> We have imported the experimental data into numerical models of Frio and Cranfield and calibrated the CCS models using EnKF with level-set and multi-objective optimization methods.

We have developed advanced flow & geomechanics modules, which are not yet well-implemented in commercial software: Homogenization, Hysteresis, Capillary-trapping, Poro-elasticity, Poro-plasticity, parameterized EnKF, Multi-objective optimization

Achieved ahead of milestone

Acknowledgements

Thank you for your attention

Contact: mfw@ices.utexas.edu

Organization Chart

Project Director											
M.F. Wheeler											
<u>Task 1</u> Morecorrect	<u>Task 2</u>	<u>Task 3</u> Dridaina	<u>Task 4</u> Modeling and	Task 5	<u>Task 6</u>						
Management	Laboratory Program	Bridging between Laboratory and Field Scales	Modeling and Field Studies	Quantification and Parameter Estimation	Results to Generate Geomechanical Screening Tool / Workflow						
Task Leader M.F. Wheeler	<u>Task Leader</u> N. Espinoza	<u>Task Leader</u> M.F. Wheeler	<u>Task Leader</u> M. Delshad	<u>Task Leader</u> M.F. Wheeler	<u>Task Leader</u> M.F. Wheeler						
Key Personnel M. Delshad S. Srinivasan N. Espinoza	Key Personnel M.F. Wheeler M. Delshad ½ Postdoc 1 Student (Y 1&2)	Key Personnel S. Srinivasan N. Espinoza ½ Postdoc 1 Student	Key Personnel M.F. Wheeler N. Espinoza ¹ ⁄2 Postdoc 1 Student (Y 3)	Key Personnel M. Delshad M.F. Wheeler 1 Student S. Srinivasan (Consultant)	Key Personnel M. Delshad S. Srinivasan N. Espinoza Postdoc Student						

Gantt Chart

Task		Sep. 2014 - Aug. 2015			Sep. 2015 - Aug. 2016			Sep. 2016 - Aug. 2017					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Management	А, В											
2	Laboratory Experiment			С	D		E		F	G			
3	Upscale from Lab. to Field								Н		I		
4	Simulator Development				J				к	L		М	
5	Uncertainty Quantification								N				ο
6	Integrated Geo- Screening Tool												Ρ
A to P · Milestones Scheduled								Δ	ccomp	lished			

Bibliography

- <u>Publication</u>:
 - Amanbek, Y., Singh, G., and Wheeler, M.F. Upscaling reservoir properties using homogenization for Frio field CO₂ sequestration, (in preparation).
 - Min, B., Nwachukwu, A., Srinivasan, S., and Wheeler, M.F. 2016, Selection of geologic models based on Pareto-optimality using surface deformation and CO₂ injection data for the In Salah gas sequestration project. SPE Journal (submitted). Nwachukwu, A., Min, B., and Srinivasan, S. 2016, Model selection for CO₂ sequestration using surface deformation and injection data. International Journal of Greenhouse Gas Control (submitted).
 - Liu, R., Ganis, B., White, D., and Wheeler, M.F. Implementation of a Drucker-Prager plasticity model in a reservoir simulator using a fixed-stress iterative coupling scheme. (In preparation).
 - White, D., Ganis, B., Liu, R., and Wheeler, M.F. Simulation of the Cranfield CO₂ injection site with a Drucker-Prager plasticity model. (In preparation).
 - White, D., Ganis, B., Liu, R., and Wheeler, M.F. A near-wellbore study with a Drucker-Prager plasticity model coupled with a parallel compositional Reservoir simulator. (In preparation).
 - Dewers, T. et al. 2016, Control of process for subsurface science and engineering: examples from geologic carbon storage. (Submitted).

• <u>Conference</u>:

- Beygi, M.R., Varavei, A., Lotfollahi, M., and Delshad, M. 2015. Low-tension gas modeling in surfactant alternating gas and surfactant/gas coinjection processes. SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11-13 Aug.
- Jung, H., Singh, G., Espinoza, N., and Wheeler, M.F. 2017. An integrated case study of the Frio CO₂ sequestration pilot test for safe and effective carbon storage including compositional flow and geomechanics. SPE Reservoir Simulation Conference, Montgomery, Texas, 20–22 Feb. (accepted).
- Min, B., Srinivasan, S., Wheeler, M.F, and Nwachukwu, A. 2016. Selection of geologic models based on Pareto-optimality using surface deformation and CO₂ injection data at the In Salah gas project, Central Algeria. SPE Annual Technical Conference and Exhibition, Dubai, Arab Emirates, 26–28 Sep. (accepted).
- Min, B., Wheeler, M.F, Sun. A. 2016. Multi-objective optimization of pulse testing results using parallel compositional simulations for reservoir characterization of a CO₂-EOR field in Mississippi. AGU Fall Meeting, San Francisco, California, 12–16 Dec. (submitted).
- Min, B., Wheeler, M.F, and Sun. A. 2017. Parallel multiobjective optimization for the coupled compositional/geomechanical modeling of pulse testing. SPE Reservoir Simulation Conference, Montgomery, Texas, 20–22 Feb. (accepted).
- Ping, J., Al-Hinai, O., Srinivasan, S. and Wheeler, M.F., 2016, History matching for fractured reservoirs using mimetic finite differences and ensemble Kalman filter. AGU Fall Meeting, San Francisco, California, 12–16 Dec. (submitted).
- Wheeler, M.F., Amanbek, Y., and Singh, G. 2016. Upscaling reservoir properties using single well tracer test, Computational Method in Water Resources, Toronto, Canada, 21–24 Jun.

